Siddharth Arya

J647-400-4151 | ➡ sid19arya@gmail.com | 🖬 linkedin.com/in/sid19arya | 🖓 github.com/sid19arya

EDUCATION

University of Toronto

B.S. in Computer Science (Minor in Statistics and Math) GPA: 3.89

- Recipient of University of Toronto International Scholar Award Scholarship
- Coursework: Data Structures, Discrete Maths, Algorithms, Digital Circuit Design, Machine Structure and Assembly-language Programming, Linear Algebra, Software Design (Clean Architecture, Design Patterns), Probability, Statistics, Intro to Data Science, Intro to Machine Learning, Operating Systems, Computer Vision, Natural Language Processing (NLP), Deep Learning

TECHNICAL SKILLS

Languages: Python, C, SQL (Postgres), Java, JavaScript, Typescript, HTML/CSS, R Frameworks: React, Node.js, ExpressJS, JUnit Developer Tools: Git, Docker, Microsoft Azure, AWS, Linux(Shell scripting), VS Code, Slurm Workload Manager Libraries: PyTorch, Pandas, NumPy, Matplotlib, Scikit-Learn, Pytest, Hugging Face (transformers)

EXPERIENCE

Research Intern: Machine Learning

Data Science Institute, University of Toronto

- Engineered a novel Machine Learning based method to monitor and evaluate performance of deployed Deep-Neural-Networks, achieving a 93% True Positive Rate in foreseeing model failure, ensuring proactive model reliability and performance - in collaboration with peers at the Vector Institute of Technology
- Organized and cleaned data for over $\sim 200,000$ patients into 900 features (lab results, vitals, demographics) using SQL and Numpy, and trained neural networks to achieve $\sim 95\%$ accuracy in predicting 14-day mortality
- Led a comprehensive benchmark study evaluating the performance of various shift detection methods, implementing solutions in **PyTorch** and **Scikit-learn** for both real-world medical and semi-synthetic data shifts, funded by the Data Science Institute at the University of Toronto
- Presented research findings at **Showcase Day** among a select group of grant recipients, highlighting the efficacy of shift detection methods and the importance of this research towards **Reliable AI**

Research Projects

Low-light, High-speed Imaging | Computational Imaging

- Supervised by Prof. Kyros Kutulakos at Toronto Computational Imaging Group
- Conducted experiments to characterise key behaviour in SPAD-512 (single photon avalanche diode) camera
- Developed on Fourier Probing Regime on photon timestamp data for higher SNR ratio of probed frequencies

Image Captioning for Selective Prediction | Trustworthy AI

- Supervised by **Prof. Marsha Chechik** at **Department of Computer Science** at the University of Toronto
- Explored auxiliary Image Captioning model to tag inputs at test-time in order to construct Functional **Requirements** for Machine Vision Component in Facial Recognition Software

Explaining Distribution Shift using SHAP | Explainable AI

- Supervised by Prof. Rahul G. Krishnan at Vector Institute of Technology
- Documented degradation of **predictive model** performance when evaluated on patients from different hospitals
- Characterised the shift in **distribution-shift** using **SHAP** values to capture functional relationship of variables

GRA-KNN: Feature Imporance in KNN | Supervised Learning

- Implemented and Benchmarked several techniques KNN, Principle Component Analysis and Decision Trees - on their efficacy for classification on the MNIST Dataset using Scikit-Learn
- Explored a Novel Modification on the KNN, which reduced input features by 87% while ultimately achieving 93.09% accuracy on classifying inputs on the MNIST dataset

Toronto, ON Expected May 2025

May 2024 - August 2024 Toronto, ON

September 2024 - Current

September 2024 - Current

January 2024- May 2024

September 2023- December 2023